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● In several emerging applications, data takes the form of continuous 
data streams, as opposed to finite stored datasets.

● Examples include stock tickers, network traffic measurements, web-
server logs, click streams, data feeds from sensor networks, and 
telecom call records.

● Stream processing differs from computation over traditional stored 
datasets in two important aspects:

(a) the sheer volume of a stream over its lifetime could be huge, and 

(b) queries require timely answers; response times should be small. 

Streaming Algorithms
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● As a consequence, it is not possible to store the stream in its entirety 
on secondary storage and scan it when a query arrives.

● This motivates the design for summary data structures with small 
memory footprints that can support both one-time and continuous 
queries.

Streaming Algorithms



4

● Networks

- Up to 1 Billion packets per hour per router. Each ISP has hundreds of routers.

- Spot faults, drops, failures
● Genomics

- Whole genome sequences for many species now available, each megabytes 
to gigabytes in size

- Analyse genomes, detect functional regions, compare across species
● Telecommunications

- There are 3 Billion Telephone Calls in US each day, 30 Billion emails daily, 1 
Billion SMS, IMs

-  Generate call quality stats, number/frequency of dropped calls
● Infeasible to store all this data in random access memory for processing.

● Solution – process the data as a stream – streaming algorithms

Why Streaming Algorithms?
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Models

Data Stream Model

● In the data stream model, some or all of the input is represented as a 
finite sequence of integers (from some finite domain) which is 
generally not available for random access, but instead arrives one at 
a time in a "stream".

● If the stream has length n and the domain has size m, algorithms are 
generally constrained to use space that is logarithmic in m and n.

● They can generally make only some small constant number of passes 
over the stream, sometimes just one.



6

Models

Turnstile and cash register models

● Much of the streaming literature is concerned with computing 
statistics on frequency distributions that are too large to be stored.

● For this class of problems, there is a vector a = ( a1 , … , an )  
(initialized to the zero vector 0)that has updates presented to it in a 
stream. The goal of these algorithms is to compute functions of a  
using considerably less space than it would take to represent a 
precisely. There are two common models for updating such streams, 
called the "cash register" and "turnstile" models.
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Models

Turnstile and cash register models(Cont..)

● In the cash register model, each update is of the form  i , c ⟨ ⟩ so that 
ai is incremented by some positive integer c. A notable special case is 
when c = 1 (only unit insertions are permitted).

● In the turnstile model, each update is of the form  i , c ⟨ ⟩, so that ai is 
incremented by some (possibly negative) integer c. In the "strict 
turnstile" model, no ai at any time may be less than zero. 
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Models

Sliding window model

● Several papers also consider the "sliding window" model.

● In this model, the function of interest is computing over a fixed-size 
window in the stream.

● As the stream progresses, items from the end of the window are 
removed from consideration while new items from the stream take 
their place.
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Evaluation

The performance of an algorithm that operates on data streams is 
measured by three basic factors:

● The number of passes the algorithm must make over the stream.

● The available memory.

● The running time of the algorithm.
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Misra-Gries Summaries

● The frequent items problem is to process a stream of items and find 
all items occurring more than a given fraction of the time.

● Misra–Gries summaries are used to solve the frequent elements 
problem in the data stream model. 

● That is, given a long stream of input that can only be examined once 
(and in some arbitrary order), the Misra-Gries algorithm can be used 
to compute which (if any) value makes up a majority of the stream, or 
more generally, the set of items that constitute some fixed fraction of 
the stream.
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Misra-Gries Summaries
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Misra-Gries Summaries
algorithm misra-gries:

    input: 

        A positive integer k

        A finite sequence s taking values in the range 1,2,...,m

    output: An associative array A with frequency estimates for each item in s

    

    A := new (empty) associative array

    while s is not empty:

        take a value i from s

        if i is in keys(A):

            A[i] := A[i] + 1

        else if |keys(A)| < k - 1:

            A[i] := 1

        else:

            for each K in keys(A):

                A[K] := A[K] - 1

                if A[K] = 0:

                    remove K from keys(A)

    return A
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Example
● Let k=2 and the data stream be 1,4,5,4,4,5,4,4 (n=8,m=5). 

● Since k=2 and |keys(A)|=k−1=1 the algorithm can only have one key with its 
corresponding value.

● The algorithm will then execute as follows

● Initially, 

Note that 4 is appearing 5 times in the data stream which is more than n/k=4 
times and thus should appear as the output of the algorithm. 

Stream Value Key Value

- -
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Example
● Let k=2 and the data stream be 1,4,5,4,4,5,4,4 (n=8,m=5). 

● Since k=2 and |keys(A)|=k−1=1 the algorithm can only have one key with its 
corresponding value.

● The algorithm will then execute as follows

● Read 1
Stream Value Key Value

1 1 1
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Example
● Let k=2 and the data stream be 1,4,5,4,4,5,4,4 (n=8,m=5). 

● Since k=2 and |keys(A)|=k−1=1 the algorithm can only have one key with its 
corresponding value.

● The algorithm will then execute as follows

● Read 4
Stream Value Key Value

4 - 0
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Example
● Let k=2 and the data stream be 1,4,5,4,4,5,4,4 (n=8,m=5). 

● Since k=2 and |keys(A)|=k−1=1 the algorithm can only have one key with its 
corresponding value.

● The algorithm will then execute as follows

● Read 5
Stream Value Key Value

5 5 1
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Example
● Let k=2 and the data stream be 1,4,5,4,4,5,4,4 (n=8,m=5). 

● Since k=2 and |keys(A)|=k−1=1 the algorithm can only have one key with its 
corresponding value.

● The algorithm will then execute as follows

● Read 4
Stream Value Key Value

4 - 0
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Example
● Let k=2 and the data stream be 1,4,5,4,4,5,4,4 (n=8,m=5). 

● Since k=2 and |keys(A)|=k−1=1 the algorithm can only have one key with its 
corresponding value.

● The algorithm will then execute as follows

● Read 4
Stream Value Key Value

4 4 1
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Example
● Let k=2 and the data stream be 1,4,5,4,4,5,4,4 (n=8,m=5). 

● Since k=2 and |keys(A)|=k−1=1 the algorithm can only have one key with its 
corresponding value.

● The algorithm will then execute as follows

● Read 5
Stream Value Key Value

5 - 0



20

Example
● Let k=2 and the data stream be 1,4,5,4,4,5,4,4 (n=8,m=5). 

● Since k=2 and |keys(A)|=k−1=1 the algorithm can only have one key with its 
corresponding value.

● The algorithm will then execute as follows

● Read 4
Stream Value Key Value

4 4 1
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Example
● Let k=2 and the data stream be 1,4,5,4,4,5,4,4 (n=8,m=5). 

● Since k=2 and |keys(A)|=k−1=1 the algorithm can only have one key with its 
corresponding value.

● The algorithm will then execute as follows

● Read 4
Stream Value Key Value

4 4 2

Output: 4
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Implementation

Output
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Analysis

● There is at most k-1 counters in D (that we can simplify to k). For 
each counter, we hold a key that can be from 1 to n, and a 
corresponding value that can be from 1 to m.

● Storing a key n require log(n) space (think of binary representations), 
and a counter m requires log(m) space. So one key-value pair 
represent log(n)+log(m) space.

● Since we have k-1 keys, we end up with a higher bound 
O(k*( log2m+log2n)) for the algorithm space usage.
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Count–Min Sketch

● Count-Min Sketch is a data structure for summarizing data streams.

● It allows fundamental queries in data stream summarization to be 
approximately answered very quickly

● In addition, it can be applied to solve several important problems in 
data streams such as finding quantiles, frequent items, etc.
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Count–Min Sketch

● In an ideal case for retrieving frequency of any streaming data we use 
Hash Table as we can Store the Hash Values in the Hash table and 
retrieve them easily at O(1).

● But by doing so we are storing all the data in the hash tables which 
will fall in to super linear Memory usage for very large (infinite) 
streaming of data.
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Count–Min Sketch

● In an ideal case for retrieving frequency of any streaming data we use 
Hash Table as we can Store the Hash Values in the Hash table and 
retrieve them easily at O(1).

● But by doing so we are storing all the data in the hash tables which 
will fall in to super linear Memory usage for very large (infinite) 
streaming of data.
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Count–Min Sketch

● To tackle this memory in efficiency model , we can use count min 
sketch to calculate the frequency in sub-linear space , because in this 
case we will not be storing the complete values of data stream , 
instead we will use a matrix to compute the frequency, where number 
of rows would be number of Hash functions we are using and 
columns would be number of outcome of the Hash Functions.
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Count–Min Sketch

● Lets say we have a stream of data Stream = {A,A,B,A,B,D,A……..}

● Lets define 4 hash functions H1,H2,H3,H4 and lets assume the below 
table for their outputs as shown in figure.

● Now lets create a matrix to keep a track of count of input streams:
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Count–Min Sketch

● Lets say we have a stream of data Stream = {A,A,B,A,B,D,A……..}

● Now for each data from stream now lets calculate the Hash outputs 
and increment the corresponding counter in the table….

H1(A) = 1, H2(A) = 3, H3(A) = 1, H4(A)=2

● Now lets create a matrix to keep a track of count of input streams:
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Count–Min Sketch

● Lets say we have a stream of data Stream = {A,A,B,A,B,D,A……..}

● Now for each data from stream now lets calculate the Hash outputs 
and increment the corresponding counter in the table….

H1(A) = 1, H2(A) = 3, H3(A) = 1, H4(A)=2

● Now lets update the matrix to keep a track of count of input streams:
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Count–Min Sketch

● Lets say we have a stream of data Stream = {A,A,B,A,B,D,A……..}

● Next in the stream we have B. So the Hash output of B is 

H1(B)= 3 ,H2(B)= 5 , H3(B) = 3 , H4(B) =1

● Now lets update the matrix to keep a track of count of input streams:
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Count–Min Sketch

● Lets say we have a stream of data Stream = {A,A,B,A,B,D,A……..}

● Next in the stream we have A. So the Hash output of A is 

H1(A) = 1, H2(A) = 3, H3(A) = 1, H4(A)=2

● Now lets update the matrix to keep a track of count of input streams:
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Count–Min Sketch

● Lets say we have a stream of data Stream = {A,A,B,A,B,D,A……..}

● Next in the stream we have B. So the Hash output of B is 

H1(B)= 3 ,H2(B)= 5 , H3(B) = 3 , H4(B) =1

● Now lets update the matrix to keep a track of count of input streams:
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Count–Min Sketch

● Lets say we have a stream of data Stream = {A,A,B,A,B,D,A……..}

● Next in the stream we have D. So the Hash output of D is 

H1(D)= 2 ,H2(D)= 1 , H3(D) = 4 , H4(D) =4

● Now lets update the matrix to keep a track of count of input streams:
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Count–Min Sketch

● Lets say we have a stream of data Stream = {A,A,B,A,B,D,A……..}

● Next in the stream we have A. So the Hash output of A is 

H1(A) = 1, H2(A) = 3, H3(A) = 1, H4(A)=2

● Now lets update the matrix to keep a track of count of input streams:
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Count–Min Sketch

● Now lets calculate the frequency of A…

● Again pass A to all hash functions and result is H1(A) = 1, H2(A) = 3, 
H3(A) = 1, H4(A)=2

● Now take the array of these positions in matrix which comes to 
(4,4,4,4) .. so minimum of this comes to 4 so the frequency of A= 4.
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Count–Min Sketch

● Similarly lets calculate frequency of B, H1(B)= 3 ,H2(B)= 5 , H3(B) = 3 
, H4(B) =1.

● So the frequency = min (2,2,2,2) = 2
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Count–Min Sketch

● In some cases due to hash collision we might get the frequency little 
more than what is expected to come, hence it guarantees to give the 
exact frequency or more.

● The accuracy will depend upon how unique the hash functions return 
the value and also, more the number of hash functions,  more 
accurate will the frequency be.

● In this way Count-Min sketch allows to calculate frequency of large 
data streams in sub linear space using same O(1) constant time 
complexity.
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Locality Sensitive Hashing

● Locality-sensitive hashing (LSH) is an algorithmic technique that 
hashes similar input items into the same "buckets" with high 
probability.

● Locality-Sensitive Hashing (LSH) is a method which is used for 
determining which items in a given set are similar.

● Rather than using the naive approach of comparing all pairs of 
items within a set, items are hashed into buckets, such that 
similar items will be more likely to hash into the same buckets. 

● As a result, the number of comparisons needed will be reduced; 
only the items within any one bucket will be compared.
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Locality Sensitive Hashing

● Locality-sensitive hashing is often used when there exist an 
extremely large amount of data items that must be compared.

● In these cases, it may also be that the data items themselves 
will be too large, and as such will have their dimensionality 
reduced by a feature extraction technique beforehand.
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Locality Sensitive Hashing

● The main application of LSH is to provide a method for efficient 
approximate nearest neighbor search through probabilistic 
dimension reduction of high-dimensional data.

● This dimensional reduction is done through feature extraction 
realized through hashing, for which different schemes are used 
depending upon the data.
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Locality Sensitive Hashing

● LSH is used in fields such as data mining, pattern recognition, 
computer vision, computational geometry, and data 
compression.

● It also has direct applications in spell checking, plagiarism 
detection, and chemical similarity.
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Locality Sensitive Hashing

Objectives: How to find efficiently

1. Similar documents among a collection of documents

2. Similar web-pages among web-pages

3. Similar fingerprints among a database of fingerprints

4. Similar sets among a collection of sets

5. Similar images from a database of images
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Similarity of Documents

Problem Definition
● Input: A collection of web-pages.
● Output: Report near duplicate web-pages.

● K-shingles: Any substring of k words that appears in the document.

● Text Document = “What is the likely date that the regular classes 
may resume in Dharan”

● 2−shingles: What is, is the, the likely, . . . , in Dharan
● 3−shingles: What is the, is the likely, . . . , resume in Dharan
● In practice: 9−shingles for English Text and 5−shingles for e-mails
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Similarity Between Sets
Text Document D → Set S

1. Form all the k-shingles of D

2. S is the collection of all k-shingles of D

Jaccard Similarity

● For a pair of sets S and T , the Jaccard Similarity is defined as
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Problem: Find Similar Sets

New Problem

Given a constant 0 ≤ s ≤ 1 and a collection of sets S, find the pairs 
of sets in S with Jaccard similarity ≥ s?

U = {Cruise, Ski, Resorts, Safari, Stay@Home}

S1 = {Cruise, Safari} S3 = {Ski, Safari, Stay@Home}

S2 = {Resorts} S4 = {Cruise, Resorts, Safari}

Problem: Given S = {S1, S2, S3, S4} and s = 1/2 , report all pairs that are 
s-similar.
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Characteristic Matrix Representation of Sets

U = {Cruise, Ski, Resorts, Safari, Stay@Home}

S = {S1, S2, S3, S4}, where each Si ⊆ U

e.g. S1 = {Cruise, Safari} and S2 = {Resorts}

Characteristic matrix for S:
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MinHash Signatures via Random Permutation
Permute Rows of characteristic matrix - π : 01234 → 40312

Minhash Signatures for a set Si w.r.t. π is the row-number of first non-zero 
element in the column corresponding to Si

h(S1) = 1

h(S2) = 3

h(S3) = 0

h(S4) = 1
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Key Lemma
Lemma

For any two sets Si and Sj in a collection of sets S where the elements 
are drawn from the universe U , the probability that the minhash value 
h(Si) equals h(Sj ) is equal to the Jaccard similarity of Si and Sj , i.e.
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Proof of Key Observation
● Consider the rows corresponding to the columns of Si and Sj .

● Let x = Number of rows where both the columns have a 1.

● Let y = Number of rows where exactly one of the columns has a 1

● Observe that  |Si ∩ Sj | = x and,

|Si  S∪ j | = x + y.

● Note that the rows where both the 

columns have 0’s can’t be the 

minHash signature of Si or Sj .

● Probability that h(Si) = h(Sj ) is same as that the row corresponding to 
x is the ‘first one’ as compared to the rows corresponding to y.
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MinHashSignature Matrix
MinHash Signature matrix for |S| = 11 sets with 12 hash functions
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LSH for MinHash
Partitioning of a signature matrix into b= 4 bands of r= 3 rows each.

Band 3: {S3, S6, S11} are hashed into the same bucket, and so are {S8, S9}
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Probability of Finding Similar Sets
Lemma

Let s > 0 be the Jaccard similarity of two sets. The probability that the 
minHash signature matrix agrees in all the rows of at least one of the 
bands for these two sets is
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Understanding f(s)
 f(s) = 1 − (1 − sr )b for different values of s, b, and r:
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S-curve
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Computational Summary
● Input: Collection of m text documents of size D

● k-shingles: Size = k.D

● Characteristic matrix of size |U| × m, where U is the universe of all 
possible k-shingles

● Signature matrix of size n × m using n-permutations

● floor( n/r) bands each consisting of r rows

● Hash maps from bands to buckets

● Output: All pairs of documents that are in the same bucket 
corresponding to a band

● Check whether the pairs correspond to similar documents!

● With the right choice of threshold Pr(the pair is similar)→ 1
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Lossy Count Algorithm

● The lossy count algorithm is an algorithm to identify elements in a 
data stream whose frequency count exceed a user-given threshold.

● The frequency computed by this algorithm is not always accurate, but 
has an error threshold that can be specified by the user.

● The run time space required by the algorithm is inversely proportional 
to the specified error threshold, hence larger the error, the smaller the 
footprint. 
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Lossy Count Algorithm - Motivations

● Here are four problems drawn from databases, data mining, and 
computer networks, where frequency counts exceeding a user-
specified threshold are computed.

1)  An iceberg query performs an aggregate function over an attribute (or 
a set of attributes) of a relation and eliminates those aggregate values 
that are below some user-specified threshold.

2) Association rules over a dataset consisting of sets of items, require 
computation of frequent itemsets, where an itemset is frequent if it 
occurs in at least a user-specified fraction of the dataset.

3) Iceberg datacubes  compute only those Group By’s of a CUBE 
operator whose aggregate frequency exceeds a user-specified 
threshold.

4) Traffic measurement and accounting of IP packets requires 
identification of flows that exceed a certain fraction of total traffic.
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Lossy Count Algorithm - Motivations

● Existing algorithms for iceberg queries, association rules, and iceberg 
cubes have been optimized for finite stored data.

● They compute exact results, attempting to minimize the number of 
passes they make over the entire dataset.

● The best algorithms take two passes. 
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Lossy Count Algorithm - Motivations

● When adapted to streams, where only one pass is allowed, and 
results are always expected to be available with short response 
times, these algorithms fail to provide any a priori guarantees on the 
quality of their output. 

● Lossy Count Algorithm computes frequency counts in a single pass 
with a priori error guarantees.

● This algorithms work for variable sized transactions and can also 
compute frequent sets of items in a single pass.
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Algorithm

● This algorithm accepts two user-specified parameters: a support 
threshold s  (0,1)∈ , and an error parameter ε  (0,1)∈  such that ε << s.

● Let N denote the current length of the stream, i.e., the number of tuples 
seen so far.

● At any point of time, this algorithm can produce a list of item(set)s along 
with their estimated frequencies. The answers produced by this 
algorithm will have the following guarantees:

1. All item(set)s whose true frequency exceeds s.N are output. There are 
no false negatives.

2. No item(set) whose true frequency is less than (s – ε).N is output.

3. Estimated frequencies are less than the true frequencies by at most ε.N

This algorithm consumes at most 1/ε * log(ε N) space
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Algorithm(Cont..)

● Imagine a user who is interested in identifying all items whose 
frequency is at least 0.1% of the entire stream seen so far.

● Then s = 0.1%

● The user is free to set ε what-ever she feels is a comfortable margin 
of error.

● Suppose, ε = 0.01%

● As per Property 1, all elements with frequency exceeding s = 0.1% 
will be output; there will be no false negatives.

● As per Property 2, no element with frequency below (s – ε) = 0.09% 
will be output.

● As per property 3, all individual frequencies are less than their true 
frequencies by at most ε = 0.01%.
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Example
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Example
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Expected Errors
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Lossy Counting in Action
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Divide into Windows/Buckets
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First Window Comes In

Go through elements. If counter exists, increase by one, if not
create one and initialise it to one.
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Adjust Counts at Window Boundaries

Reduce all counts by one. If counter is zero for a specific element, drop it.
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Next Window Comes In

Count elements and adjust counts afterwards.
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Lossy Counting Summary

● Split Stream into Windows

● For each window: Count elements, if no counter exists, create one.

● At window boundaries: Reduce all frequencies by one. If frequency 
goes to zero, drop counter.

● Process next window.
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Output

To reduce false positives to acceptable amount, only output counters with 
frequency f ≥ (s − ϵ)N = 18.
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Other Counting Algorithms Based on Stream
Windows

Sticky Sampling
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Lossy Counting vs. Sticky Sampling
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