
7. Streaming Algorithms

Pukar Karki
Assistant Professor

2

● In several emerging applications, data takes the form of continuous
data streams, as opposed to finite stored datasets.

● Examples include stock tickers, network traffic measurements, web-
server logs, click streams, data feeds from sensor networks, and
telecom call records.

● Stream processing differs from computation over traditional stored
datasets in two important aspects:

(a) the sheer volume of a stream over its lifetime could be huge, and

(b) queries require timely answers; response times should be small.

Streaming Algorithms

3

● As a consequence, it is not possible to store the stream in its entirety
on secondary storage and scan it when a query arrives.

● This motivates the design for summary data structures with small
memory footprints that can support both one-time and continuous
queries.

Streaming Algorithms

4

● Networks

- Up to 1 Billion packets per hour per router. Each ISP has hundreds of routers.

- Spot faults, drops, failures
● Genomics

- Whole genome sequences for many species now available, each megabytes
to gigabytes in size

- Analyse genomes, detect functional regions, compare across species
● Telecommunications

- There are 3 Billion Telephone Calls in US each day, 30 Billion emails daily, 1
Billion SMS, IMs

- Generate call quality stats, number/frequency of dropped calls
● Infeasible to store all this data in random access memory for processing.

● Solution – process the data as a stream – streaming algorithms

Why Streaming Algorithms?

5

Models

Data Stream Model

● In the data stream model, some or all of the input is represented as a
finite sequence of integers (from some finite domain) which is
generally not available for random access, but instead arrives one at
a time in a "stream".

● If the stream has length n and the domain has size m, algorithms are
generally constrained to use space that is logarithmic in m and n.

● They can generally make only some small constant number of passes
over the stream, sometimes just one.

6

Models

Turnstile and cash register models

● Much of the streaming literature is concerned with computing
statistics on frequency distributions that are too large to be stored.

● For this class of problems, there is a vector a = (a1 , … , an)
(initialized to the zero vector 0)that has updates presented to it in a
stream. The goal of these algorithms is to compute functions of a
using considerably less space than it would take to represent a
precisely. There are two common models for updating such streams,
called the "cash register" and "turnstile" models.

7

Models

Turnstile and cash register models(Cont..)

● In the cash register model, each update is of the form i , c ⟨ ⟩ so that
ai is incremented by some positive integer c. A notable special case is
when c = 1 (only unit insertions are permitted).

● In the turnstile model, each update is of the form i , c ⟨ ⟩, so that ai is
incremented by some (possibly negative) integer c. In the "strict
turnstile" model, no ai at any time may be less than zero.

8

Models

Sliding window model

● Several papers also consider the "sliding window" model.

● In this model, the function of interest is computing over a fixed-size
window in the stream.

● As the stream progresses, items from the end of the window are
removed from consideration while new items from the stream take
their place.

9

Evaluation

The performance of an algorithm that operates on data streams is
measured by three basic factors:

● The number of passes the algorithm must make over the stream.

● The available memory.

● The running time of the algorithm.

10

Misra-Gries Summaries

● The frequent items problem is to process a stream of items and find
all items occurring more than a given fraction of the time.

● Misra–Gries summaries are used to solve the frequent elements
problem in the data stream model.

● That is, given a long stream of input that can only be examined once
(and in some arbitrary order), the Misra-Gries algorithm can be used
to compute which (if any) value makes up a majority of the stream, or
more generally, the set of items that constitute some fixed fraction of
the stream.

11

Misra-Gries Summaries

12

Misra-Gries Summaries
algorithm misra-gries:

 input:

 A positive integer k

 A finite sequence s taking values in the range 1,2,...,m

 output: An associative array A with frequency estimates for each item in s

 A := new (empty) associative array

 while s is not empty:

 take a value i from s

 if i is in keys(A):

 A[i] := A[i] + 1

 else if |keys(A)| < k - 1:

 A[i] := 1

 else:

 for each K in keys(A):

 A[K] := A[K] - 1

 if A[K] = 0:

 remove K from keys(A)

 return A

13

Example
● Let k=2 and the data stream be 1,4,5,4,4,5,4,4 (n=8,m=5).

● Since k=2 and |keys(A)|=k−1=1 the algorithm can only have one key with its
corresponding value.

● The algorithm will then execute as follows

● Initially,

Note that 4 is appearing 5 times in the data stream which is more than n/k=4
times and thus should appear as the output of the algorithm.

Stream Value Key Value

- -

14

Example
● Let k=2 and the data stream be 1,4,5,4,4,5,4,4 (n=8,m=5).

● Since k=2 and |keys(A)|=k−1=1 the algorithm can only have one key with its
corresponding value.

● The algorithm will then execute as follows

● Read 1
Stream Value Key Value

1 1 1

15

Example
● Let k=2 and the data stream be 1,4,5,4,4,5,4,4 (n=8,m=5).

● Since k=2 and |keys(A)|=k−1=1 the algorithm can only have one key with its
corresponding value.

● The algorithm will then execute as follows

● Read 4
Stream Value Key Value

4 - 0

16

Example
● Let k=2 and the data stream be 1,4,5,4,4,5,4,4 (n=8,m=5).

● Since k=2 and |keys(A)|=k−1=1 the algorithm can only have one key with its
corresponding value.

● The algorithm will then execute as follows

● Read 5
Stream Value Key Value

5 5 1

17

Example
● Let k=2 and the data stream be 1,4,5,4,4,5,4,4 (n=8,m=5).

● Since k=2 and |keys(A)|=k−1=1 the algorithm can only have one key with its
corresponding value.

● The algorithm will then execute as follows

● Read 4
Stream Value Key Value

4 - 0

18

Example
● Let k=2 and the data stream be 1,4,5,4,4,5,4,4 (n=8,m=5).

● Since k=2 and |keys(A)|=k−1=1 the algorithm can only have one key with its
corresponding value.

● The algorithm will then execute as follows

● Read 4
Stream Value Key Value

4 4 1

19

Example
● Let k=2 and the data stream be 1,4,5,4,4,5,4,4 (n=8,m=5).

● Since k=2 and |keys(A)|=k−1=1 the algorithm can only have one key with its
corresponding value.

● The algorithm will then execute as follows

● Read 5
Stream Value Key Value

5 - 0

20

Example
● Let k=2 and the data stream be 1,4,5,4,4,5,4,4 (n=8,m=5).

● Since k=2 and |keys(A)|=k−1=1 the algorithm can only have one key with its
corresponding value.

● The algorithm will then execute as follows

● Read 4
Stream Value Key Value

4 4 1

21

Example
● Let k=2 and the data stream be 1,4,5,4,4,5,4,4 (n=8,m=5).

● Since k=2 and |keys(A)|=k−1=1 the algorithm can only have one key with its
corresponding value.

● The algorithm will then execute as follows

● Read 4
Stream Value Key Value

4 4 2

Output: 4

22

Implementation

Output

23

Analysis

● There is at most k-1 counters in D (that we can simplify to k). For
each counter, we hold a key that can be from 1 to n, and a
corresponding value that can be from 1 to m.

● Storing a key n require log(n) space (think of binary representations),
and a counter m requires log(m) space. So one key-value pair
represent log(n)+log(m) space.

● Since we have k-1 keys, we end up with a higher bound
O(k*(log2m+log2n)) for the algorithm space usage.

24

Count–Min Sketch

● Count-Min Sketch is a data structure for summarizing data streams.

● It allows fundamental queries in data stream summarization to be
approximately answered very quickly

● In addition, it can be applied to solve several important problems in
data streams such as finding quantiles, frequent items, etc.

25

Count–Min Sketch

● In an ideal case for retrieving frequency of any streaming data we use
Hash Table as we can Store the Hash Values in the Hash table and
retrieve them easily at O(1).

● But by doing so we are storing all the data in the hash tables which
will fall in to super linear Memory usage for very large (infinite)
streaming of data.

26

Count–Min Sketch

● In an ideal case for retrieving frequency of any streaming data we use
Hash Table as we can Store the Hash Values in the Hash table and
retrieve them easily at O(1).

● But by doing so we are storing all the data in the hash tables which
will fall in to super linear Memory usage for very large (infinite)
streaming of data.

27

Count–Min Sketch

● To tackle this memory in efficiency model , we can use count min
sketch to calculate the frequency in sub-linear space , because in this
case we will not be storing the complete values of data stream ,
instead we will use a matrix to compute the frequency, where number
of rows would be number of Hash functions we are using and
columns would be number of outcome of the Hash Functions.

28

Count–Min Sketch

● Lets say we have a stream of data Stream = {A,A,B,A,B,D,A……..}

● Lets define 4 hash functions H1,H2,H3,H4 and lets assume the below
table for their outputs as shown in figure.

● Now lets create a matrix to keep a track of count of input streams:

29

Count–Min Sketch

● Lets say we have a stream of data Stream = {A,A,B,A,B,D,A……..}

● Now for each data from stream now lets calculate the Hash outputs
and increment the corresponding counter in the table….

H1(A) = 1, H2(A) = 3, H3(A) = 1, H4(A)=2

● Now lets create a matrix to keep a track of count of input streams:

30

Count–Min Sketch

● Lets say we have a stream of data Stream = {A,A,B,A,B,D,A……..}

● Now for each data from stream now lets calculate the Hash outputs
and increment the corresponding counter in the table….

H1(A) = 1, H2(A) = 3, H3(A) = 1, H4(A)=2

● Now lets update the matrix to keep a track of count of input streams:

31

Count–Min Sketch

● Lets say we have a stream of data Stream = {A,A,B,A,B,D,A……..}

● Next in the stream we have B. So the Hash output of B is

H1(B)= 3 ,H2(B)= 5 , H3(B) = 3 , H4(B) =1

● Now lets update the matrix to keep a track of count of input streams:

32

Count–Min Sketch

● Lets say we have a stream of data Stream = {A,A,B,A,B,D,A……..}

● Next in the stream we have A. So the Hash output of A is

H1(A) = 1, H2(A) = 3, H3(A) = 1, H4(A)=2

● Now lets update the matrix to keep a track of count of input streams:

33

Count–Min Sketch

● Lets say we have a stream of data Stream = {A,A,B,A,B,D,A……..}

● Next in the stream we have B. So the Hash output of B is

H1(B)= 3 ,H2(B)= 5 , H3(B) = 3 , H4(B) =1

● Now lets update the matrix to keep a track of count of input streams:

34

Count–Min Sketch

● Lets say we have a stream of data Stream = {A,A,B,A,B,D,A……..}

● Next in the stream we have D. So the Hash output of D is

H1(D)= 2 ,H2(D)= 1 , H3(D) = 4 , H4(D) =4

● Now lets update the matrix to keep a track of count of input streams:

35

Count–Min Sketch

● Lets say we have a stream of data Stream = {A,A,B,A,B,D,A……..}

● Next in the stream we have A. So the Hash output of A is

H1(A) = 1, H2(A) = 3, H3(A) = 1, H4(A)=2

● Now lets update the matrix to keep a track of count of input streams:

36

Count–Min Sketch

● Now lets calculate the frequency of A…

● Again pass A to all hash functions and result is H1(A) = 1, H2(A) = 3,
H3(A) = 1, H4(A)=2

● Now take the array of these positions in matrix which comes to
(4,4,4,4) .. so minimum of this comes to 4 so the frequency of A= 4.

37

Count–Min Sketch

● Similarly lets calculate frequency of B, H1(B)= 3 ,H2(B)= 5 , H3(B) = 3
, H4(B) =1.

● So the frequency = min (2,2,2,2) = 2

38

Count–Min Sketch

● In some cases due to hash collision we might get the frequency little
more than what is expected to come, hence it guarantees to give the
exact frequency or more.

● The accuracy will depend upon how unique the hash functions return
the value and also, more the number of hash functions, more
accurate will the frequency be.

● In this way Count-Min sketch allows to calculate frequency of large
data streams in sub linear space using same O(1) constant time
complexity.

39

Locality Sensitive Hashing

● Locality-sensitive hashing (LSH) is an algorithmic technique that
hashes similar input items into the same "buckets" with high
probability.

● Locality-Sensitive Hashing (LSH) is a method which is used for
determining which items in a given set are similar.

● Rather than using the naive approach of comparing all pairs of
items within a set, items are hashed into buckets, such that
similar items will be more likely to hash into the same buckets.

● As a result, the number of comparisons needed will be reduced;
only the items within any one bucket will be compared.

40

Locality Sensitive Hashing

● Locality-sensitive hashing is often used when there exist an
extremely large amount of data items that must be compared.

● In these cases, it may also be that the data items themselves
will be too large, and as such will have their dimensionality
reduced by a feature extraction technique beforehand.

41

Locality Sensitive Hashing

● The main application of LSH is to provide a method for efficient
approximate nearest neighbor search through probabilistic
dimension reduction of high-dimensional data.

● This dimensional reduction is done through feature extraction
realized through hashing, for which different schemes are used
depending upon the data.

42

Locality Sensitive Hashing

● LSH is used in fields such as data mining, pattern recognition,
computer vision, computational geometry, and data
compression.

● It also has direct applications in spell checking, plagiarism
detection, and chemical similarity.

43

Locality Sensitive Hashing

Objectives: How to find efficiently

1. Similar documents among a collection of documents

2. Similar web-pages among web-pages

3. Similar fingerprints among a database of fingerprints

4. Similar sets among a collection of sets

5. Similar images from a database of images

44

Similarity of Documents

Problem Definition
● Input: A collection of web-pages.
● Output: Report near duplicate web-pages.

● K-shingles: Any substring of k words that appears in the document.

● Text Document = “What is the likely date that the regular classes
may resume in Dharan”

● 2−shingles: What is, is the, the likely, . . . , in Dharan
● 3−shingles: What is the, is the likely, . . . , resume in Dharan
● In practice: 9−shingles for English Text and 5−shingles for e-mails

45

Similarity Between Sets
Text Document D → Set S

1. Form all the k-shingles of D

2. S is the collection of all k-shingles of D

Jaccard Similarity

● For a pair of sets S and T , the Jaccard Similarity is defined as

46

Problem: Find Similar Sets

New Problem

Given a constant 0 ≤ s ≤ 1 and a collection of sets S, find the pairs
of sets in S with Jaccard similarity ≥ s?

U = {Cruise, Ski, Resorts, Safari, Stay@Home}

S1 = {Cruise, Safari} S3 = {Ski, Safari, Stay@Home}

S2 = {Resorts} S4 = {Cruise, Resorts, Safari}

Problem: Given S = {S1, S2, S3, S4} and s = 1/2 , report all pairs that are
s-similar.

47

Characteristic Matrix Representation of Sets

U = {Cruise, Ski, Resorts, Safari, Stay@Home}

S = {S1, S2, S3, S4}, where each Si ⊆ U

e.g. S1 = {Cruise, Safari} and S2 = {Resorts}

Characteristic matrix for S:

48

MinHash Signatures via Random Permutation
Permute Rows of characteristic matrix - π : 01234 → 40312

Minhash Signatures for a set Si w.r.t. π is the row-number of first non-zero
element in the column corresponding to Si

h(S1) = 1

h(S2) = 3

h(S3) = 0

h(S4) = 1

49

Key Lemma
Lemma

For any two sets Si and Sj in a collection of sets S where the elements
are drawn from the universe U , the probability that the minhash value
h(Si) equals h(Sj) is equal to the Jaccard similarity of Si and Sj , i.e.

50

Proof of Key Observation
● Consider the rows corresponding to the columns of Si and Sj .

● Let x = Number of rows where both the columns have a 1.

● Let y = Number of rows where exactly one of the columns has a 1

● Observe that |Si ∩ Sj | = x and,

|Si S∪ j | = x + y.

● Note that the rows where both the

columns have 0’s can’t be the

minHash signature of Si or Sj .

● Probability that h(Si) = h(Sj) is same as that the row corresponding to
x is the ‘first one’ as compared to the rows corresponding to y.

51

MinHashSignature Matrix
MinHash Signature matrix for |S| = 11 sets with 12 hash functions

52

LSH for MinHash
Partitioning of a signature matrix into b= 4 bands of r= 3 rows each.

Band 3: {S3, S6, S11} are hashed into the same bucket, and so are {S8, S9}

53

Probability of Finding Similar Sets
Lemma

Let s > 0 be the Jaccard similarity of two sets. The probability that the
minHash signature matrix agrees in all the rows of at least one of the
bands for these two sets is

54

Understanding f(s)
 f(s) = 1 − (1 − sr)b for different values of s, b, and r:

55

S-curve

56

Computational Summary
● Input: Collection of m text documents of size D

● k-shingles: Size = k.D

● Characteristic matrix of size |U| × m, where U is the universe of all
possible k-shingles

● Signature matrix of size n × m using n-permutations

● floor(n/r) bands each consisting of r rows

● Hash maps from bands to buckets

● Output: All pairs of documents that are in the same bucket
corresponding to a band

● Check whether the pairs correspond to similar documents!

● With the right choice of threshold Pr(the pair is similar)→ 1

57

Lossy Count Algorithm

● The lossy count algorithm is an algorithm to identify elements in a
data stream whose frequency count exceed a user-given threshold.

● The frequency computed by this algorithm is not always accurate, but
has an error threshold that can be specified by the user.

● The run time space required by the algorithm is inversely proportional
to the specified error threshold, hence larger the error, the smaller the
footprint.

58

Lossy Count Algorithm - Motivations

● Here are four problems drawn from databases, data mining, and
computer networks, where frequency counts exceeding a user-
specified threshold are computed.

1) An iceberg query performs an aggregate function over an attribute (or
a set of attributes) of a relation and eliminates those aggregate values
that are below some user-specified threshold.

2) Association rules over a dataset consisting of sets of items, require
computation of frequent itemsets, where an itemset is frequent if it
occurs in at least a user-specified fraction of the dataset.

3) Iceberg datacubes compute only those Group By’s of a CUBE
operator whose aggregate frequency exceeds a user-specified
threshold.

4) Traffic measurement and accounting of IP packets requires
identification of flows that exceed a certain fraction of total traffic.

59

Lossy Count Algorithm - Motivations

● Existing algorithms for iceberg queries, association rules, and iceberg
cubes have been optimized for finite stored data.

● They compute exact results, attempting to minimize the number of
passes they make over the entire dataset.

● The best algorithms take two passes.

60

Lossy Count Algorithm - Motivations

● When adapted to streams, where only one pass is allowed, and
results are always expected to be available with short response
times, these algorithms fail to provide any a priori guarantees on the
quality of their output.

● Lossy Count Algorithm computes frequency counts in a single pass
with a priori error guarantees.

● This algorithms work for variable sized transactions and can also
compute frequent sets of items in a single pass.

61

Algorithm

● This algorithm accepts two user-specified parameters: a support
threshold s (0,1)∈ , and an error parameter ε (0,1)∈ such that ε << s.

● Let N denote the current length of the stream, i.e., the number of tuples
seen so far.

● At any point of time, this algorithm can produce a list of item(set)s along
with their estimated frequencies. The answers produced by this
algorithm will have the following guarantees:

1. All item(set)s whose true frequency exceeds s.N are output. There are
no false negatives.

2. No item(set) whose true frequency is less than (s – ε).N is output.

3. Estimated frequencies are less than the true frequencies by at most ε.N

This algorithm consumes at most 1/ε * log(ε N) space

62

Algorithm(Cont..)

● Imagine a user who is interested in identifying all items whose
frequency is at least 0.1% of the entire stream seen so far.

● Then s = 0.1%

● The user is free to set ε what-ever she feels is a comfortable margin
of error.

● Suppose, ε = 0.01%

● As per Property 1, all elements with frequency exceeding s = 0.1%
will be output; there will be no false negatives.

● As per Property 2, no element with frequency below (s – ε) = 0.09%
will be output.

● As per property 3, all individual frequencies are less than their true
frequencies by at most ε = 0.01%.

63

Example

64

Example

65

Expected Errors

66

Lossy Counting in Action

67

Divide into Windows/Buckets

68

First Window Comes In

Go through elements. If counter exists, increase by one, if not
create one and initialise it to one.

69

Adjust Counts at Window Boundaries

Reduce all counts by one. If counter is zero for a specific element, drop it.

70

Next Window Comes In

Count elements and adjust counts afterwards.

71

Lossy Counting Summary

● Split Stream into Windows

● For each window: Count elements, if no counter exists, create one.

● At window boundaries: Reduce all frequencies by one. If frequency
goes to zero, drop counter.

● Process next window.

72

Output

To reduce false positives to acceptable amount, only output counters with
frequency f ≥ (s − ϵ)N = 18.

73

Other Counting Algorithms Based on Stream
Windows

Sticky Sampling

74

Lossy Counting vs. Sticky Sampling

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

